English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية
클러스터링은 비감독 학습으로, 유사한 객체를 같은 그룹에 배치하는 것으로, 자동 분류와 비슷합니다. 그룹 내 객체가 더 유사할수록, 그룹 간의 차이가 더 크면 클러스터링 효과가 더 좋습니다.
1、k均值聚类算法
k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述。首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中。然后将每个簇的质心更新为所有数据集的平均值。然后再进行第二次划分数据集,直到聚类结果不再变化为止。
伪代码为
随机创建k个簇质心
当任意一个点的簇分配发生改变时:
对数据集中的每个数据点:
对每个质心:
计算数据集到质心的距离
将数据集分配到最近距离质心对应的簇
对每一个簇,计算簇中所有点的均值并将均值作为质心
python实现
import numpy as np import matplotlib.pyplot as plt def loadDataSet(fileName): dataMat = [] with open(fileName) as f: for line in f.readlines(): line = line.strip().split('\t') dataMat.append(line) dataMat = np.array(dataMat).astype(np.float)32) return dataMat def distEclud(vecA,vecB): return np.sqrt(np.sum(np.power((vecA-vecB),2))) def randCent(dataSet,k): m = np.shape(dataSet)[1] center = np.mat(np.ones((k,m))) for i in range(m): centmin = min(dataSet[:,i]) centmax = max(dataSet[:,i]) center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1) return center def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent): m = np.shape(dataSet)[0] clusterAssment = np.mat(np.zeros((m,2))) centroids = createCent(dataSet,k) clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): minDist = np.inf minIndex = -1 for j in range(k): distJI = distMeans(dataSet[i,:],centroids[j,:]) if distJI < minDist: minDist = distJI minIndex = j if clusterAssment[i,0] != minIndex: clusterChanged = True clusterAssment[i,:] = minIndex,minDist**2 for cent in range(k): ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]] centroids[cent,:] = np.mean(ptsInClust,axis = 0) return centroids,clusterAssment data = loadDataSet('testSet.txt') muCentroids, clusterAssing = kMeans(data,4) fig = plt.figure(0) ax = fig.add_subplot(111) ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A) plt.show() print(clusterAssing)
2、二分k均值算法
K均值算法可能会收敛到局部最小值,而非全局最小。一种用于度量聚类效果的指标为误差平方和(SSE)。因为取了平方,更加重视原理中心的点。为了克服k均值算法可能会收敛到局部最小值的问题,有人提出来二分k均值算法。
首先将所有点作为一个簇,然后将该簇一分为二,然后选择所有簇中对其划分能够最大程度减低SSE的值的簇,直到满足指定簇数为止。
伪代码
将所有点看成一个簇
计算SSE
while 当簇数目小于k时:
for 每一个簇:
计算总误差
在给定的簇上进行k均值聚类(k=2)
计算将该簇一分为二的总误差
选择使得误差最小的那个簇进行划分操作
python实现
import numpy as np import matplotlib.pyplot as plt def loadDataSet(fileName): dataMat = [] with open(fileName) as f: for line in f.readlines(): line = line.strip().split('\t') dataMat.append(line) dataMat = np.array(dataMat).astype(np.float)32) return dataMat def distEclud(vecA,vecB): return np.sqrt(np.sum(np.power((vecA-vecB),2))) def randCent(dataSet,k): m = np.shape(dataSet)[1] center = np.mat(np.ones((k,m))) for i in range(m): centmin = min(dataSet[:,i]) centmax = max(dataSet[:,i]) center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1) return center def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent): m = np.shape(dataSet)[0] clusterAssment = np.mat(np.zeros((m,2))) centroids = createCent(dataSet,k) clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): minDist = np.inf minIndex = -1 for j in range(k): distJI = distMeans(dataSet[i,:],centroids[j,:]) if distJI < minDist: minDist = distJI minIndex = j if clusterAssment[i,0] != minIndex: clusterChanged = True clusterAssment[i,:] = minIndex,minDist**2 for cent in range(k): ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]] centroids[cent,:] = np.mean(ptsInClust,axis = 0) return centroids,clusterAssment def biKmeans(dataSet,k,distMeans = distEclud): m = np.shape(dataSet)[0] clusterAssment = np.mat(np.zeros((m,2))) centroid0 = np.mean(dataSet,axis=0).tolist() centList = [centroid0] for j in range(m): clusterAssment[j,1] = distMeans(dataSet[j,:],np.mat(centroid0))**2 while (len(centList)<k): lowestSSE = np.inf for i in range(len(centList)): ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:,0].A == i)[0],:] centroidMat,splitClustAss = kMeans(ptsInCurrCluster,2,distMeans) sseSplit = np.sum(splitClustAss[:,1]) sseNotSplit = np.sum(clusterAssment[np.nonzero(clusterAssment[:,0].A != i)[0],1]) if (sseSplit + sseNotSplit) < lowestSSE: bestCentToSplit = i bestNewCents = centroidMat.copy() bestClustAss = splitClustAss.copy() lowestSSE = sseSplit + sseNotSplit print('the best cent to split is ',bestCentToSplit) # print('the len of the bestClust') bestClustAss[np.nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit 1)[0],0] = len(centList) bestClustAss[np.nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit clusterAssment[np.nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:] = bestClustAss.copy() centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0] centList.append(bestNewCents[1,:].tolist()[0]) return np.mat(centList),clusterAssment data = loadDataSet('testSet2.txt') muCentroids, clusterAssing = biKmeans(data,3) fig = plt.figure(0) ax = fig.add_subplot(111) ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A,cmap=plt.cm.Paired) ax.scatter(muCentroids[:,0],muCentroids[:,1]) plt.show() print(clusterAssing) print(muCentroids)
코드 및 데이터셋 다운로드:K-means
이것이 본 문서의 전체 내용입니다. 많은 도움이 되길 바라며, 많은 지원을 해 주시기를 바랍니다.
고지사항: 본문은 인터넷에서 가져온 내용으로, 저작권자는 본 사이트에 소유되지 않으며, 인터넷 사용자가 자발적으로 기여하고 자체로 업로드한 내용으로, 본 사이트는 인공적인 편집을하지 않으며, 관련 법적 책임을 부담하지 않습니다. 저작권 침해가 의심되는 내용이 있으면 notice#w로 이메일을 보내 주시기 바랍니다.3codebox.com에 신고를 보내시면, #을 @으로 변경하시고 관련 증거를 제공해 주시면, 사실이 확인되면 이 사이트는 즉시 저작권 침해 내용을 삭제합니다.